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Abstract:  A general theory is presented of optimum diffusion via multi-dimensional 2-
point transforms over the ring of integers modulo a power of 2.  This theory, which
makes extensive use of graph-theoretic techniques, establishes the optimality of the
transform diffuser used in the cipher SAFER+. A complete characterization is given of
the matrix that describes an optimum transform diffuser.  Finally, some open problems
are identified and the theory is generalized to the case of multi-dimensional n-point
transforms.

1. Introduction

Fifty years after the publication of Shannon’s seminal paper [1] on secrecy systems,
Shannon’s principles of “confusion” and “diffusion” remain the most widely accepted
principles for the design of block ciphers.  The Data Encryption Algorithm of the Data
Encryption Standard (DES) [2] was explicitly designed in light of these principles, as
were many of the algorithms that are in the competition for selection as the Advanced
Encryption Standard (AES), including the cipher SAFER+ of our co-design [3]. In spite
of the acknowledged importance of Shannon’s principles, there is little agreement on
their precise meaning and even less theory to suggest how much “confusion” and/or
“diffusion” can be achieved.  The present paper aims to remedy this lack of theory, at
least to some small degree, for the principle of “diffusion”.

We begin in the next two sections by describing the use of D-dimensional 2-point
transform diffusers as the invertible linear transformation of a substitution/linear-
transformation cipher.  SAFER+ makes use of such a 4-dimensional transform diffuser.
Two directed graphs, the transform skeleton and the shuffle graph are introduced to
describe such transform diffusers.  Section 4 presents the necessary and sufficient
condition for a transform diffuser to provide optimum diffusion and gives a rather
complete characterization of the resulting linear transformation.  In particular, the
transform diffuser of SAFER+ is shown to provide optimum diffusion.  Section 5
connects transform skeletons to the well-known de Bruijn diagrams that are used in shift-
register analysis, but leaves open the question of characterizing those transform skeletons
that differ from de Bruijn graphs.  In Section 6 we give the generalization of the theory to
n-point transforms, and we close in Section 7 with a few remarks.
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2.  Substitution/Linear-Transformation Ciphers

Fig. 1 shows the well-known round structure of a Feistel cipher and of a general
substitution/linear-transformation cipher, which includes the Feistel structure as a special
case.

In the Feistel structure, which is used in the Data Encryption Algorithm of the Data
Encryption Standard (DES) [2] and has been adopted in many later ciphers, the round
input is separated into its left half, L, and right half, R, an arbitrary function f is applied to
R and the round key as arguments, the output of f is added bit-by-bit modulo-two to L to
produce a new left half, and finally the left and right halves are “swapped” to produce the
round output.  The section of the Feistel round structure above the dashed line in Fig. 1
constitutes the “key-controlled substitution” of the round structure of a general
substitution/linear-transformation cipher.  A key-controlled substitution is a function of
the round input and round key that, for every fixed value of the round key, is a
permutation (i.e., an invertible mapping) on the round input.  That this section of the
Feistel round structure indeed gives a key-controlled substitution is easily seen by the fact
that, for any fixed value of the round key, this section realizes a mapping that is its own
inverse, i.e., an “involution”. The section of the Feistel round structure below the dashed
line in Fig. 1, i.e., the simple “swapping of halves” coordinate permutation, constitutes
the “invertible linear transformation” M of the round structure of a general
substitution/linear-transformation cipher.

Although the Feistel round structure has many positive features, including the fact
that the same structure can be used for encryption and decryption rounds (when the
“swapping of halves” is omitted from the final round), we chose the more general
substitution/linear-transformation round structure for SAFER+ (as we did for the
previous ciphers in the SAFER family). cf. [3].  The main reason for choosing this more
general structure was to take advantage of the opportunity that it offers for choosing the
the invertible linear transformation M of the round structure to obtain demonstrably good
“diffusion”, i.e., to ensure that changing of a single symbol in the vector of symbols input
to this transformation causes many output symbols to change.  To state these
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considerations more precisely, we write the operation of the invertible linear
transformation in the manner

y  =  x  M

where the row vectors x = [x1, x2, … , xL] and y = [y1, y2, … , yL] are the input and output,
respectively, of the linear transformation described by the L × L invertible matrix M.  Each
of the components of x, y and M is an m-bit symbol that is treated as an element of the
ring of integers modulo 2m, which ring we denote as Ζ2

m.  The length N in bits of the
round input and round output, i.e., the block size of the cipher, is related to the length L in
symbols of the vectors x and y in the manner N = mL.
     We illustrate these ideas for SAFER+.  The symbols of x and y are bytes, i.e., m = 8,
and hence the arithmetic used is that of Ζ256, arithmetic modulo 256.  The block size is N
= 128 and hence the length of x and y is L = N/m = 16 symbols.  The matrix M of the
SAFER+ linear transformation is the 16 × 16 matrix

It should be noted that every row of M contains at least five 1 entries (and all odd-
numbered rows contain exactly five 1 entries), which means that changing any single
input symbol will change at least five output symbols.  We will see later that this is
optimum in a very strong sense.  Moreover, there are changes of an input symbol that will
cause only this minimum number of output symbols to change, namely a change by 128
in any odd-numbered symbol position.  One notes further that every column of M contains
at least five 1 entries (and all odd-numbered columns contain exactly five 1 entries),
which means that for each output symbol there are at least five input symbols for which a
change in any of those input symbols is guaranteed to change that output symbol.

The matrix M of the SAFER+ linear transformation can be realized in the manner
shown in Fig. 2.  In this figure, the boxes labelled “2-PHT”, where PHT stands for
“pseduo-Hadamard transform”, implement the simple linear transformation whose
matrix, corresponding “butterfly”, and inverse matrix are shown in Fig. 3.
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One sees from Fig 3 that two byte additions suffice to implement the 2-PHT.  The
first byte addition of the inputs a and b give the second output a + b.  A second byte
addition of a to this result gives the first output 2a + b.  Thus, the 32 2-PHT operations
shown in Fig. 2 can be implemented with just 64 byte additions.  The only other
operation required to implement the matrix M of SAFER+ is the coordinate permutation
that we have called the “Armenian Shuffle” in Fig. 2 in honor of its inventors, Gurgen
Khachatrian and Melsik Kuregian, who are both with the Armenian Academy of Sciences
and who are also co-designers of the SAFER+ algorithm.  In the notation of DES [2], the
Armenian Shuffle is the coordinate permutation [9 12 13 16 3 2 7 6 11 10 15 14 1 8 5 4]
with the meaning that the first output of the permutation is the ninth input symbol, the
second output is the twelfth input symbol, etc.  The use of the Armenian Shuffle and its
determination of the matrix M given above constitutes the major improvement of
SAFER+ over the ciphers in the previous SAFER family of ciphers, cf. [3].
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In the next section, we place the SAFER+ linear transformation into the general
context of “transform diffusers” and introduce a graphical representation that we will use
to study optimum diffusion with such transform diffusers.

3.  Multi-Dimensional 2-Point Transform Diffusers

          The SAFER+ linear transformation discussed in the previous section is a special
case of what we call a multi-dimensional 2-point transform diffuser, the general form of
which for the D = 1 + d dimensional case is shown in Fig. 4.  The parameter d, which
will play a central role in the subsequent theory, is just the number of additional
dimensions added to a basic 1-dimensional transform by “shuffling” among the
coordinates.

In Fig. 4, the boxes labeled “2-TRA” represent an arbitrary linear transform for a
“time axis” with only two points.  Such a transform is equivalent to an operation with an
invertible 2 × 2 matrix with entries in Ζ2

m.  Writing this matrix as

we see that the condition for invertibility is just that the determinant, ad – bc,  of H be a
unit of the ring Ζ2

m (i.e., an element with a multiplicative inverse), which is just the
requirement that ad – bc be an odd integer.  In particular, this precludes that all four
entries of H themselves be units, i.e., odd integers.  For this reason, the usual Walsh-
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Hadamard 2-point transform for which a = b = c = 1 and d = -1 cannot be used in the ring
Ζ2

m as it is not invertible.
          We now consider the general meaning of a transform shuffle for a D-dimensional
2-point transform as illustrated in Fig. 4.  The transform shuffle is a coordinate
permutation with the property that it creates a path from each of the 2d “2-TRA” boxes at
level 1 in Fig. 4 to each of the 2d 2-TRA boxes at level D = 1 + d.  Because the transform
shuffle creates only two paths from a 2-TRA box connected to its input to 2-TRA boxes
connected to its output, it follows that a transform shuffle creates a unique path from each
of the 2d 2-TRA boxes at level 1 to each of the 2d 2-TRA boxes at level D = 1 + d.  It is
convenient to describe the box interconnections made by a transform shuffle with what
we will call a “transform skeleton”.  A transform skeleton (for a D = 1 + d dimensional 2-
point transform) is a directed graph having 2d vertices and having two branches that enter
each vertex and two branches that leave each vertex such that there is a directed path
(necessarily unique) of length exactly d branches between every pair of vertices.  Upon
associating the vertices with the 2d 2-TRA boxes at any level of the transform, the
branches from any vertex of the transform skeleton point to the vertices representing the
two 2-TRA boxes at the next level that are connected to the 2-TRA box represented by this
vertex.
           Fig. 5 shows the unique d = 1 transform skeleton and the unique d = 2 transform
skeleton.  [The uniqueness of these transform skeletons will be obvious to the reader who
spends a few moments trying to construct transform skeletons for d = 1 and for d = 2.]
One sees immediately that these are instances of the well-known de Bruijn graphs that are
widely used in the study of linear-feedback shift registers [4].  We will soon have more to
say about de Bruijn graphs.

The transform skeleton does not completely describe a transform shuffle (assuming
an association of the vertices with the 2d 2-TRA boxes at any fixed level of the transform)
because it does not indicate which of the two outgoing branches from a vertex is the first
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output and which is the second output of the 2-TRA box corresponding to this vertex, nor
does it indicate which of the two incoming branches at a vertex is the first input and
which is the second input of the 2-TRA box corresponding to this vertex.  We remedy this
deficiency of the transform skeleton by “coloring” its branches in such a way as to
specify these connections and to warrant the description “shuffle graph” for the resulting
colored graph.  Our “coloring” rules are 1) to draw the first half of a branch leaving a
vertex with a thick line if it leaves the first output of the corresponding 2-TRA box and
with a thin line if it leaves the second output, and 2) to draw the second half of a branch
with a thick line if it enters the first input of the 2-TRA box corresponding to the entered
vertex and with a thin line if it enters the second input of the 2-TRA box corresponding to
the entered vertex.

Fig. 6 shows the shuffle graphs for two different transform shuffles, both with the
convention that the upper vertex corresponds to the first 2-TRA box and the lower vertex
to the second 2-TRA box at any level of the transform.  The first graph shows that the first
output of the first 2-TRA box is directed to the first input of the same box at the next level,
that the second output of this box is connected to the first input of the other box at the
next level, etc.

4. Optimum D-Dimensional 2-Point Transform Diffusers

We will say that a D-dimensional 2-point transform diffuser operating on symbols of
the ring Ζ2

m is optimum if, among all such transform diffusers, it maximizes the minimum
number of output symbols that are caused to change by the change of one input symbol
and, in case of ties for this number, also maximizes the next smallest number of output
symbols that are caused to change by the change of one input symbol.  If M is the L × L
matrix over Ζ2

m that describes the D-dimensional 2-point transform diffuser, then this
optimality is equivalent to the condition that the minimum number of units (i.e., odd
integers) that appear in any row of M is maximum and, in case of ties, the second smallest
number of units in any row is also maximum.  This follows from the fact that a change by
2m-1 in any input symbol causes changes in precisely those output symbols corresponding
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to the odd entries (i.e., the units) in the row of M that corresponds to this input symbol
because α⋅2m-1  = 0 modulo 2m for any even integer α.

We write µ(D) to denote the minimum number of output symbols that are caused to
change by the change of one input symbol for an optimum transform diffuser.  We begin
our development of the theory of optimum 2-point transform diffusers by considering the
1-dimensional case where we claim that the 2-PHT is optimum.  Recall from Fig. 3 that
this linear transformation has the matrix

We have already seen that the matrix of a 2-point transform cannot have all odd entries.
It follows that the 2-PHT is an optimum 1-dimensional diffuser and that µ(1) = 1.
Moreover, every other optimum 1-dimensional diffuser is essentially equivalent to the 2-
PHT because it must also have exactly three odd entries.  Because a product of ring
elements is a unit if and only if each factor is a unit, it follows from the definition of a
transform shuffle that the odd entries (i.e., the units) in the matrix M of a D = 1 + d
dimensional 2-point transform are determined entirely by the odd entries in the matrix of
the underlying 2-point transform.  We could with no loss of essential generality confine
our attention to D = 1 + d dimensional 2-point transforms based on the 2-PHT when
developing the theory of optimum diffusing transforms.  In fact, we may and will confine
our attention even more narrowly to D = 1 + d dimensional 2-point transforms based on
the 2-TRA whose matrix T2 is the matrix H2 with its single non-unit entry 2 replaced by 0
when developing the theory of optimum diffusing transforms. Figure 7 shows the matrix
H2 and its corresponding “butterfly”.

We are now ready to consider optimum diffusion with multi-dimensional 2-point
transforms.  Fig. 8 shows the general situation for a D = 2 dimensional (d = 1) 2-point
transform based on T2.  We first observe the simple fact that the number of 1’s among the
four output symbols produced by the input a = 1 will be strictly less than the number of
1’s among the four output symbols produced by the input b = 1.  Similarly, the number of
1’s among the four output symbols produced by the input c = 1 will be strictly less than
the number of 1’s among the four output symbols produced by the input d = 1.  It follows
that the transform shuffle will give optimum diffusion if and only if it causes the second
and fourth input symbols to become the second and fourth output symbols (in either
order).  This of course implies that the first and third input symbols must then become the
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first and third output symbols.  (To be a valid transform shuffle, each of the two boxes at
level one must be connected to both of the boxes at level two, which precludes that the
transform shuffle be the simple identity map or the “swapping of halves” coordinate
permutation.)  But this is entirely equivalent to the condition that the branch “coloring”
of the shuffle graph for this transform shuffle be such that both halves of all branches
have the same “color”, i.e., that the entire branch is drawn as a thin line or that the entire
branch is drawn as a thick line.  We have proved the D = 2 case of the following result.

Proposition 1: A D = 1 + d dimensional 2-point transform based on the 2-PHT provides
optimum diffusion if and only if its transform shuffle connects even-numbered inputs only
to even-numbered outputs (and hence also odd-numbered inputs only to odd-numbered
outputs) or, equivalently, if and only if the branch “coloring” of the shuffle graph is such
that both halves of all branches have the same “color” (i.e., the entire branch is drawn
as a thin line or that the entire branch is drawn as a thick line).

Example:  It follows from the proposition that of the two shuffles in Fig. 6 only the
second gives optimum diffusion.  The matrices of these two D =2 dimensional transforms
based on the 2-PHT are:

from which the superior diffusion of M[1 3 2 4] is clear and its optimality establishes that
µ(2) = 2, i.e., that any change in one of the four input symbols will change at least two of
the four output symbols.  Incidentally, the transform shuffle [1 3 2 4] that gives non-
optimum diffusion is the “Hadamard shuffle” (also called “decimation by two”) that is
used in the standard 2-dimensional Walsh-Hadamard transform.  Indeed, the transform
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shuffle used in the previous ciphers in the SAFER family made use of the Hadamard
shuffle and hence the diffusion thereby provided was not optimum.

Proposition 1 follows by a simple induction from the proof for the D = 2 case that
was presented above.  One merely takes the situation of Fig. 8 (with a suitable increase in
the number of boxes in each layer) to be that of any two successive layers in the general
case.  The same argument that was used for D = 2 above carries through again with the
same conclusion: diffusion is optimum if and only if the transform shuffle connects even-
numbered inputs only to even-numbered outputs.

Fig. 9 displays shuffle graphs for the three essentially different D = 3 (d = 2)
dimensional 2-point transforms based on the 2-PHT that produce optimum diffusion.  By
essentially different, we mean that we ignore the particular assignment of 2-PHT boxes
to the vertices of the graph; thus, each of these shuffle graphs with 4 vertices corresponds
to 4! = 24 “different” such transforms.

We now determine the function µ(D) defined above, i.e., the minimum number of output
symbol changes caused by a single input symbol change in a D-dimensional 2-point
transform with optimum diffusion.  We consider the situation shown in Fig. 10 of two 2-
TRA boxes at levels one and two of the transform.  By the symmetry of the argument used
to prove Proposition 1, we know that from every odd-numbered input to the transform
there will be exactly µ(D) paths (with weight 1 on each branch) to output symbols (and
the branches with weight 0 may be ignored).   One such odd-numbered input symbol is
isolated in Fig. 10 and marked with the number µ(D) of paths from it to output symbols.
But, because there is only one path from this symbol through the 2-TRA box itself, this
implies that there are also µ(D) paths from the even numbered input of the 2-TRA box to
which the even-numbered output of the former 2-TRA box is connected.  Moreover, the
odd-numbered input of the latter 2-TRA box must have µ(D-1) paths to outputs, which
implies that there must also be µ(D-1) paths to outputs from the even-numbered output of
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this latter 2-TRA box.  Finally, the odd-numbered output of this latter 2-TRA box must be
connected to the odd-numbered input of some 2-TRA box at level 3 and hence must have
µ(D-2) paths to outputs.  But the number of paths to output symbols from the even-
numbered input of any 2-TRA box is the sum of the number of paths to output symbols
from its two outputs and hence

µ(D)  =  µ(D-1) + µ(D-2),

which is just Fibonacci’s recursion.  Recalling that µ(1) = 1 and µ(2) = 2, we see that
µ(1), µ(2), µ(3), µ(4), µ(5), … is just the Fibonacci sequence 1, 2, 3, 5, 8, … .  This
shows for instance that an optimum transform diffuser for D = 4  (the situation for
SAFER+) will have a minimum of 5 units (which are all 1’s for optimum-diffusing
transforms based on the 2-PHT) in each row of its corresponding matrix M.  Because the
matrix M of SAFER+, given in Section 2 above, has a minimum of five 1’s in each row, it
follows that the linear transformation of SAFER+ is an optimum transform diffuser.

We now summarize the most important properties of optimum transform diffusers.
We omit a detailed proof since the assertions are simple consequences of the arguments
used above.

Proposition 2:  The matrix M of an optimum D-dimensional 2-point transform diffuser
operating on symbols of the ring Ζ2

m is a 2D × 2D matrix with entries in Ζ2
m such that

• each odd-numbered row of M contains µ(D) entries that are units of Ζ2
m (which units

are all 1’s if the 2-TRA used is the 2-PHT),
• each even-numbered row of M contains µ(D) + µ(D-1) = µ(D+1) entries that are

units of Ζ2
m (which units are all 1’s if the 2-TRA used is the 2-PHT),

• every pair of even-numbered rows of M differ only by a permutation of their entries,
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• every pair of odd-numbered rows of M differ only by a permutation of their entries,
and

• the transpose of M is also an optimum D-dimensional 2-point transform diffuser, viz.
the one whose shuffle graph is obtained by reversing the direction of all branches in
the shuffle graph of the transform diffuser corresponding to M.

Note that the second point of this proposition explains why the matrix M of the SAFER+
transform diffuser, which is given in Section 2, has exactly µ(5) = 8 1’s in each of its
even-numbered rows.  The last point explains why the odd-numbered columns of M all
contain µ(4) = 5 1’s and the even-numbered columns of M all contain µ(5) = 8 1’s.

We emphasize here the generality of the ideas presented.  For instance, if one
used 1-bit symbols (m = 1) for the block size of N = 128 bits, then the length L of the
transform would be L = N/m = 128 =  27 symbols.  Thus, a D = 7 (d = 6) dimensional
transform diffuser would be required. The matrix M of an optimum 7-dimensional 2-point
transform diffuser would have µ(7) = 21 1’s in each of its odd-numbered rows and in
each of its odd-numbered columns, and would have µ(8) = 34 1’s in each of its even-
numbered rows and in each of its even-numbered columns.  This means, for instance, that
changing a single input bit to the linear transformation M would be guaranteed to change
at least 21 of the 128 output bits.

5. Transform Skeletons and de Bruijn Diagrams

We now return briefly to the connection between de Bruijn diagrams and
transform skeletons.

A binary de Bruijn diagram with parameter d is used to study the possible state
behavior of binary feedback shift registers of length d.  Fig. 11 gives the binary de Bruijn
diagram for d = 3.  The 23 = 8 vertices of this graph are labeled with the possible states or
contents of the shift register, for instance the state 100.  The feedback function of the
register operates on this state to produce a binary digit which is fed into the shift register
on the left causing the previous contents to be displaced one position to the right, except
for the rightmost digit which leaves the register.  Thus, the two possible successors of
state 100 are the states 010 (which results if the feedback function produces a 0) and 110
(which results if the feedback function produces a 1).  This is shown in the de Bruijn
diagram by a directed branch from the vertex labeled 100 to the vertex labeled 010 and a
directed branch from the vertex labeled 100 to the vertex labeled 110.
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There is a unique directed path of length d between any pair of states in the binary de
Bruijn diagram with parameter d.  This is easily seen from Fig. 11.  Starting from any
state, the feedback sequence 1, 1, 0 will move the state to 011.  The same argument goes
through in general, the required feedback sequence being just the reverse of the digits in
the “target” state.  This property of the de Bruijn diagram means that, if the state labels
are removed (i.e., replaced by unmarked vertices), then this diagram (which we will call a
binary “de Bruijn graph”) becomes a transform skeleton for a D = 1 + d dimensional 2-
point transform as defined in Section 3 above.

We have already mentioned in Section 3 that the only transform skeleton for a D = 2
dimensional 2-point transform and for a D = 3 dimensional 2-point transform is the d = 1
and d = 2 binary de Bruijn graph, respectively, which graphs are shown in Fig. 5.  It thus
was quite surprising to us to find that, for D > 3 (d > 2), there are transform skeletons that
are not de Bruijn graphs.  Fig. 12 shows such a transform skeleton for d = 3, which we
have called the “Armenian skeleton” because it is the transform skeleton corresponding
to the Armenian shuffle that is used in SAFER+ and was described in Section 2.  The
Armenian skeleton differs from the d = 3 de Bruijn graph in that the vertices on which the
two branches drawn dashed in Fig. 12 terminate are interchanged.  The reader is invited
to check that the Armenian skeleton is indeed a transform skeleton for d = 3, i.e., that it
has the property that there is a directed path of length d = 3 branches between every pair
of vertices.  The example of the Armenian skeleton suggests an interesting new graph-
theoretic problem: find all the transform skeletons for  D = 1 + d dimensional 2-point
transforms with d > 2.
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6.  Generalization to n-Point Transforms

We now show that the theory of the preceding sections, which treated 2-point transforms,
has a natural generalization to n-point transforms over Ζ2

m.  First, the 2-PHT, whose
matrix H2 is given in Fig. 3, generalizes naturally to what we will call the n- PHT whose
matrix is the n × n matrix

The operation of this matrix can be implemented with 2(n –1) symbol additions (which
are byte additions when m = 8), viz. n – 1 additions to form the sum represented by the
last row of Hn and one further addition to form the sum represented by each of the n  - 1
preceding rows.  The determinant of Hn is 1 as is easily seen by subtracting the last row
from each of the preceding rows, which operations do not change the determinant.
Hence, the matrix Hn is indeed invertible.  The inverse matrix is easily verified to be
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The theory developed above for 2-point transform diffusers goes through virtually
unchanged for the n-point case.  In particular, the following generalization of Proposition
1 holds.

Proposition 3: A D = 1 + d dimensional n-point transform based on the n-PHT provides
optimum diffusion if and only if its transform shuffle connects inputs with index 0 modulo
n only to outputs with index 0 modulo n.

Moreover, n-ary de Bruijn graphs with parameter d can be used as transform
skeletons, but it is likely that other graphs can also be used just as was seen above for the
binary case.

7. Concluding Remarks

We have given a fairly complete treatment of multi-dimensional n-point transform
diffusers over the ring of integers Ζ2

m.  This theory establishes the optimality of the linear
transformation M used for diffusion in the cipher SAFER+, but it also opens the door for
the use of similar transformations in future ciphers.  It seems to us not unreasonable that
optimum transform diffusers as considered in this paper may find applications in
cryptography and coding theory beyond simply serving as the linear transformation in
substitution/linear-transformation ciphers.

Finally, we wish to mention that very significant improvements in the software and
hardware implementations of SAFER+ have been made since the time of its submission
as an AES candidate [3].  The interested reader is directed to the SAFER+ Forum at the
N.I.S.T. web site: www.nist.gov/aes for details of these improvements.
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